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We deal with the function z [ ( f (z), f $(z)) where f (z)=�i�0 aizi, (ai # C) with
limi � � ai+1_ai&1 �(ai)

2=q. We investigate the convergence of the vector QD
algorithm. We give the asymptotic behaviour of the generalized Hankel determinants.
A convergence result on the vector orthogonal polynomials is proved. � 1996

Academic Press, Inc.

1. INTRODUCTION

Let us consider a function f analytic at 0. Let us give an arbitrary polyno-
mial v of degree q and an integer p. It is well known that there is a rational
function with a numerator of degree p and zqv(z&1) as denominator whose
series expansion coincides with that of f up to degree p. Such a rational func-
tion is called a Pade� type approximant of f ([2]). For improving the degree
of approximation, the polynomial v must be well chosen. This study leads
to the polynomials (P (s)

r )r, s . These polynomials are defined by (2). The poly-
nomial P (s)

r exists and is unique if and only if the Hankel determinant

as } } } ar+s&1

H (s)
r = } b b } (1)

as+r&1 } } } as+2r&2

does not vanish. Under this condition, P (s)
r has the following expression

}
as

b

as+r&1

as+r

} } }

} } }
} } }

ar+s&1

b

as+2r&2

as+2r&1

1
b

xr&1

xr }
P (s)

r =
H (s)

r (x)
H (s)

r

= . (2)
as } } } ar+s&1

} b b }as+r&1 } } } as+2r&2
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If H (s)
r {0, the polynomial P� (s)

r , i.e. P� (s)
r (x)=xrP (s)

r (1�x), is the denominator
of the Pade� approximant [r+s&1�r]f of f. Moreover, s being fixed, the
family (P (s)

r )r�0 is the family of formal orthogonal polynomials associated
to the functional a(s)

a(s)(xi)=ai+s . (3)

On the other hand, we have the following recurrence relation

P (s)
r+1(x)=xP (s+1)

r (x)&q (s)
r+1P (s)

r (x) r�0, s�0, P (s)
0 #0 (s�0) (4)

with

q (s)
r =

H (s+1)
r+1 _H (s)

r

H (s)
r+1_H (s+1)

r

. (5)

The numbers (q (s)
r ) are computed by using the quotient difference algo-

rithm (QD algorithm) of Rutishauer ([5], p. 609).
Lots of convergence results on the polynomials P (s)

r exist. A review of
results can be found in [3]. It can be remarked that if the behaviour of the
sequence (q (s)

r+1)s�0 (r is fixed) is known, by using (4) and arguing by
recurrence on r, convergence results for the sequences (P (s)

r )s�0 can be
proved. This idea occurs in [6]. The interesting fact is that the relation (4)
is still valid in the vector case. The Hankel determinants are replaced by
generalized Hankel determinants:

if ai # Cd and r=nd+k (0�k�d )

H (s)
r = }

as

b

as+n&1

a (k)
s+n

} } }

} } }
} } }

ar+s&1

b

as+n+r&2

a (k)
s+n+r&1

} (6)

(each vector row represents the d scalar rows of the components, and the
last row the k first components). The polynomial P� (s)

r (x) is the denominator
(see Section 3.1) of a vector rational function which approaches the series
�n�0 an zn in the Pade� sense. In Section 3, the definition of a vector Pade�
approximant will be recalled (for more details and for comparison with
other simultaneous rational approximations see [9]). The quantities q (s)

r

can be computed by using a vector quotient-difference algorithm ([9]).
We are going to exploit this idea in the case of a function z [

( f (z), f $(z)), f : C � C. Why do we consider this choice? There are two
motivations:
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v the problem to approximate a function and its first derivative (this
problem was already considered in [1, 4]);

v if we consider the pair ( f , f $) we have a link between the coefficients
of the two series.

This paper is organized as follows. In Section 2 we come back to the
scalar case. In Section 3 we deal with the function z [ ( f (z), f $(z)) where
f (z)=�i�0 ai zi with the assumption limi � � ai+1_ai&1 �(ai)

2=q. A result
on the asymptotic behaviour of the generalized Hankel determinants is
proved. Finally, we investigate the convergence of the vector orthogonal
polynomials.

2. THE SCALAR CASE

2.1. Meromorphic Functions

Let us quote the following result:

Theorem 2.1 [5, p. 626]. Let the function f be analytic at z=0 and
meromorphic in the disk D: |z|<_ and let its poles zi=u&1

i in D, which may
be finite or infinite in number, be numbered such that

0<|z1 |�|z2 |� } } } <_,

each pole occurring as many times in the sequence (zk) as indicated by its
order. Let the Taylor series of f at 0 be normal (i.e. H (s)

r {0 for all r�0 and
s�0). Then for every r such that |zr |< |zr+1 | the polynomials P (s)

r

associated with the Taylor series satisfy

lim
s � �

P (s)
r (x)=(x&u1)(x&u2) } } } (x&ur),

uniformly in x in every bounded set.

Remark 2.1. By using (4), we can obtain a similar result. However, the
assumptions must be stronger. As a matter of fact, still according to [5],
if |zr&1 |<|zr |<|zr+1 |, then we have lims � � q (s)

r =ur .
Starting from P (s)

0 #1 (s�0), by virtue of (4), we get

P (s)
1 =xP (s+1)

0 (x)&q (s)
1 P (s)

0 (x)=x&q (s)
1 (7)

and thus lims � � P (s)
1 (x)=x&u1 uniformly on the compact subsets of C.

Assuming that

lim
s � �

P (s)
r (x)=(x&u1)(x&u2) } } } (x&ur)
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uniformly on the compact subsets of C, and writing

P (s)
r+1(x)=xP (s+1)

r (x)&q (s)
r+1P (s)

r (x),

we obtain

lim
s � �

P (s)
r+1(x)=x(x&u1) } } } (x&ur)&ur+1(x&u1) } } } (x&ur) (8)

=(x&u1) } } } (x&ur)(x&ur+1) (9)

uniformly on compact subsets of C.

2.2. Functions with Smooth Maclaurin Series Coefficients

Let us consider the formal power series f (z)=�j�0 aj z j with aj # C"[0]
and

lim
i � �

ai+1_ai&1

(ai)
2 =q # C.

Definition 2.1. Such a function is called a function with smooth
Maclaurin series coefficients.

If |q|<1, f is an entire function of zero order.
Lubinsky obtained the following result on the Toeplitz determinants

D(s�r) (i.e. H (s)
r =(&1)r(r&1)�2 D(s+r&1�r)):

Theorem 2.2 [6]. Let us assume that f (z)=�j�0 ajz j with aj{0 for j
large enough and

lim
i � �

ai+1_ai&1

(ai)
2 =q # C.

Then we have

lim
s � �

D(s�r)
(as)

r = `
r&1

j=1

(1&q j)r& j (r is fixed ).

Let us note that if q is not a root of unity, we are allowed to do ratios
of Toeplitz determinants. Thus
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Corollary 2.1. With the previous assumptions and if q is not a root of
unity, we have

q (s)
r =

ar+s

ar+s&1

(1+o(1)),

r being fixed and s � �.

This result occurs in [6]. We have

q (s)
r =

H (s+1)
r _H (s)

r&1

H (s)
r _H (s+1)

r&1

(10)

=
D(r+s�r)_D(s+r&2�r&1)

D(r+s&1�r)_D(r+s&1�r&1)
(11)

=

D(r+s�r)
(ar+s)

r

D(r+s+1)
(ar+s&1)r

_

D(r+s&2�r&1)
(ar+s&2)r&1

D(r+s&1�r&1)
(ar+s&1)r&1

_\ar+s_ar+s&2

(ar+s&1)2 +
r&1

_
ar+s

ar+s&1

(12)

Applying Theorem 2.2, we obtain the asymptotic behaviour of q (s)
r .

Remark 2.2. We can prove directly the result of the corollary by using
the rules of the QD algorithm ([5], p. 609). Let us consider, with the usual
notation, the property

(Rm) {
q (n)

m =
n � � am+n

am+n&1

qm&1(1+o(1))

e (n)
m =

n � � am+n

am+n&1

(qm&1)(1+o(1))
(13)

(q # C* and is not a root of unity). The initialization of the QD algorithm
gives

e (n)
1 =q (n+1)

1 &q (n)
1 =

an+2

an+1

&
an+1

an
. (14)

Thus

e (n)
1 =

an+1

an \an+2_an

(an+1)2 &1+ =
n � � an+1

an
(q&1)(1+o(1)), (15)
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(R1) is true. Let us now assume that (Rm) is true. Then

q (n)
m+1 =

e (n+1)
m

e (n)
m

q (n+1)
m (16)

=
n � �

am+n+1

am+n
(qm&1)(1+o(1))

am+n

am+n&1

(qm&1)(1+o(1))
_

am+n+1

am+n
qm&1(1+o(1)) (17)

=
n � � am+n+1_am+n&1

(am+n)2 _
am+n+1

am+n
qm&1(1+o(1)) (18)

=
n � � am+n+1

am+n
qm(1+o(1)) (19)

and

e (n)
m+1 = [q (n+1)

m+1 &q (n)
m+1]+e (n+1)

m (20)

e (n)
m+1 =

n � � _am+n+2

am+n+1

qm(1+o(1))&
am+n+1

am+n
qm(1+o(1))&

+
am+n+1

am+n
(qm&1)(1+o(1))

e (n)
m+1 =

n � � am+n+1

am+n _am+n+2_am+n

(am+n+1)2 qm(1+o(1))&qm(1+o(1))

+(qm&1)(1+o(1))]

e (n)
m+1 =

n � � am+n+1

am+n
[qm+1(1+o(1))&qm(1+o(1))

+(qm&1)(1+o(1))],

and finally

e (n)
m+1 =

n � � am+n+1

am+n
(qm+1&1)(1+o(1)). (21)

(Rm+1) is true. In conclusion, (Rm) is true for all m # N*.
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Let us come back to the recurrence relation (4). It can be written as

P� (s)
r+1(x)=P� s+1

r (x)&xq (s)
r+1P� (s)

r (22)

and thus

P� (s)
r+1 \x

ar+s

ar+s+1+=P� (s+1)
r \x

ar+s

ar+s+1+
&xq (s)

r+1

ar+s

ar+s+1

P� (s)
r \x

ar+s&1

ar+s

(ar+s)
2

ar+s&1_ar+s+1+ .

Lubinsky proved then, by recurrence and using the asymptotic expansion
of q (s)

r+1 as s � �, that

lim
s � �

P� (s)
r \x

ar+s&1

ar+s +=Br(x) (23)

uniformly on compact subsets of C, where Br denotes the rth Rogers-Szego�
polynomial ([6, 7]). These polynomials are defined by

Br+1(x)=Br(x)&xqrBr(xq&1) (B0#1). (24)

Let us now deal with the vector case.

3. THE VECTOR CASE

3.1. Notation [9]

Let us consider two analytic functions at zero, f1(z)=�i�0 aizi and
f2(z)=�i�0 bizi. We put F(z)=( f1(z), f2(z)).

Definition 3.1. The generalized Hankel determinants associated to F
are

as } } } ar+s&1

bs } } } br+s&1

as+1 } } } ar+s

H (s)
r = } bs+1 } } } br+s } if r=2n (25)

b b b

as+n&1 } } } ar+s+n&2

bs+n&1 } } } br+s+n&2
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and

H (s)
r = }

as } } } ar+s&1

} if r=2n+1 (26)

bs } } } br+s&1

as+1 } } } ar+s

bs+1 } } } br+s

b b b

as+n&1 } } } ar+s+n&2

bs+n&1 } } } br+s+n&2

as+n } } } ar+s+n&1

Given any ( p, q) # N2, we seek a polynomial Q of degree q and two polyno-
mials P1 and P2 of degree p, such that

F(z)&
P

Q
(z)=0(z p+[q�2]+1) as z � 0 (27)

(P=(P1 , P2), [q�2] is the integer part of q�2).

Definition 3.2. The vector P�Q=(P1 �Q, P2 �Q) of rational functions is
called the vector Pade� approximant of degree ( p, q) to the vector of formal
power series F=( f1 , f2), and is denoted by [ p�q]F .

For example, if r=2n and H (s)
2n does not vanish, the denominator of the

vector Pade� approximant [r+s&1�r]F is the polynomial P� (s)
r where:

as } } } ar+s

bs } } } br+s

as+1 } } } ar+s+1} bs+1 } } } br+s+1 }b b b

as+n&1 } } } as+r+n&1

bs+n&1 } } } bs+r+n&1

1 } } } xr

P (s)
r = . (28)

}
as } } } ar+s&1

}
bs } } } br+s&1

as+1 } } } ar+s

bs+1 } } } br+s

b b b

as+n&1 } } } ar+s+n&2

bs+n&1 } } } br+s+n&2
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We have

F(z)&[r+s&1�r]F (z)=O(zr+s+n) as z � 0, r=2n+k (k=0 or 1).

(29)

Let us now deal with the function F(z)=( f (z), f $(z)) where f (z)=
�i�0 ai zi (ai # C*). Let qj be the quantity aj&1_aj+1 �(aj)

2. We assume
that

lim
j � �

qj=q # C. (30)

First of all, we shall establish a result on the asymptotic behaviour of the
determinant H (s)

r when s � �.

3.2. Asymptotic Behaviour of H (s)
r

In the scalar case the behaviour of the Toeplitz determinants was com-
pared to the product of the elements of the diagonal. If we consider Hankel
determinants, we have to take the product of the elements of the
antidiagonal. We now state our result:

Theorem 3.1. Let f (z)=�i�0 aizi (ai # C*) be a formal power series.
Let us assume that lim j � � qj=q # C, where qj=aj&1_aj+1 �(aj)

2. Let r be
an integer, r=2n+k (k=0 or 1). The two following quantities have a limit,
denoted ?r(q), as s � � and r is fixed

H (s)
r

s(as+n)2 } } } (as+r&1)2 (r is even)

H (s)
r

as+n(as+n+1)2 } } } (as+r&1)2 (r is odd ).

Proof. With the previous notation, we have here bs=(s+1) as+1.
Thus, if r is even, by doing linear combinations between the rows, we
obtain

as as+1 } } } ar+s&1

as+1 2as+2 } } } rar+s

as+1 as+2 } } } ar+s

H (s)
r = } b b b }(n&1) as+n&1 nas+n } } } (r+n&2) ar+s+n&2

as+n&1 as+n } } } ar+s+n&2

(s+n) as+n (s+n+1) as+n+1 } } } (r+s+n&1) as+n&1+r
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It can be remarked that s appears as a factor only for the coefficients of the
last row. In the same way, if r is odd, there is no coefficient with s as factor.
If i=2%i+ki (ki=0 or 1), the coefficient of the i th row and j th column of
H (s)

r is

as+%i+ j&1 if ki=1 (31)

(%i+ j&1) as+%i+ j&1 if ki=0 and i{2n (32)

(s+%i+ j&1) as+%i+ j&1 if i=2n. (33)

Let us multiply the i th row by (ar+s �ar+s&1)r+1&i and the j th column by
(ar+s �ar+s&1)& j, for i=1, ..., r, j=1, ..., r. These multiplications do not
change the value of the determinant.

Let us put

D1=
H (s)

r

s(as+n)2 } } } (as+r&1)2 (r is even), (34)

and

D2=
H (s)

r

as+n(as+n+1)2 } } } (as+r&1)2 (r is odd). (35)

We can see that the coefficient of the i th row and j th column is in D1

or D2

\as+%i+ j&1

as+%i+r&i+\
ar+s

ar+s+1+
r+1&(i+ j)

(36)

with a multiplying factor which does not depend on s, except for the last
row of D1 where this factor is of the form (s+h)�s, which tends to 1 when
s � �. Putting t=(i+ j)&(r+1) and m=s+%i+r&i, we have

as+%i+ j&1

as+%i+r&i
=

ami+t

ami

. (37)

Let us assume for example that t>0. Then

ami+t

ami

= `
t&1

l=0

ami+l+1

ami+l
(38)

but

ami+l+1

ami+l
=qmi+l } } } qmi+1

ami+1

ami

(39)
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thus

ami+t

ami

=
s � � qt(t&1)�2 \ami+t

ami
+

t

(1+o(1)). (40)

We now have to examine

\ami+1

ami

_
ar+s&1

ar+s +
t

. (41)

Starting from ar+s �ar+s&1=ami+l+1 �ami+l with l=i&%i&1, we obtain

ar+s

ar+s&1

=\ `
i&%i&1

k=1

qmi+k+ ami+1

ami

(42)

and

\ami+1

ami

_
ar+s&1

ar+s +
t

= \ `
i&%i&1

k=1

(qmi+k)&1+
t

(43)

=
s � � q(%i+1&i) t(1+o(1)). (44)

Finally, by taking the limit in D1 or in D2 , we obtain a determinant whose
coefficient of the i th row and the jth column is, with a multiplying factor,

q(%i+1&i) t_qt(t&1)�2 (45)

t=i+ j&(r+1) and i=2%i+ki . K

Remark 3.1. 1. ?r(q) is a rational function of q;

2. ?r(q) depends only on q. More precisely, ?r(q) can be computed
starting from the series f (z)=�i�0 qi(i&1)�2 zi;

3. for example, it can be seen that

(a) ?2(q)=q&1;

(b) ?3(q)=&(q&1)2;

(c) ?4(q)=(q&1)5 (q+1);

(d) ?5(q)=(q&1)8 (q+1)2;

(e) ?6(q)=(q3&1)(q+1)4 (q&1)12;

(f) ?7(q)=&(q3&1)2 (q+1)6 (q&1)16.

3.3. Asymptotic Expansion for the Vector QD Algorithm

Let us now establish the asymptotic of the vector QD algorithm.
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Corollary 3.1. Let us assume that ?r(q){0 and ?r&1(q){0
(r=2n+k, k=0 or 1). Then, we have

q (s)
r =

s � � qr&1 as+n+1

as+n
(1+o(1)).

Proof. Let us prove it when r is even. We have

q(s)
r =

H (s+1)
r

(s+1)(as+n+1)2 } } } (as+r)
2_

H (s)
r&1

as+n&1(as+n)2 } } } (as+r&2)2

H (s)
r

s(as+n)2 } } } (as+r&1)2_
H (s+1)

r&1

as+n(as+n+1)2 } } } (as+r&1)2

_
(s+1)(as+n+1)2 } } } (as+r)

2_as+n&1(as+n)2 } } } (as+r&2)2

s(as+n)2 } } } (as+r&1)2_as+n(as+n+1)2 } } } (as+r&1)2 .

and by virtue of Theorem 3.1

q (s)
r =

s � �
(1+o(1)) \ as+r

as+r&1+
2

_
as+n&1

as+n
. (46)

Moreover

\ as+r

as+r&1+
2

_
as+n&1

as+n
= \as+r

as+n+
2

_\as+n&1

as+r&1+
2

_
as+n

as+n&1

, (47)

as+r

as+n
= `

n&1

l=0
\qs+n+l_qs+n+l&1_ } } }

_qs+n+1_
as+n+1

as+n + (48)

=
s � � \as+n+1

as+n +
n

qn(n&1)�2(1+o(1)), (49)

and

as+r&1

as+n&1

=
as+n&1+n

as+n&1

(50)

=
s � � \ as+n

as+n&1+
n

qn(n&1)�2(1+o(1)). (51)
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Thus

\ as+r

as+r&1+
2

_
as+n&1

as+n
=

s � � \as+n+1_as+n&1

(as+n)2 +
2n

_
as+n

as+n&1

(1+o(1))

=
s � � \as+n+1_as+n&1

(as+n)2 +
2n&1

_
as+n+1

as+n
(1+o(1))

=
s � � qr&1 as+n+1

as+n
(1+o(1)). K

3.4. Convergence of the Vector Orthogonal Polynomials

The following relation holds

P� (s)
r+1(x)=P� (s+1)

r (x)&xq (s)
r+1P� (s)

r (x). (52)

Thus, using the asymptotic of the vector QD algorithm, it is not difficult
to obtain asymptotics for the vector orthogonal polynomials. But, the main
difference with the scalar case, is that we have to distinguish between the
cases r even and r odd. Let us now state our last result.

Corollary 3.2. Assume that ?r(q){0 for all r�0. Define the polyno-
mials Vn by

Vn+1(x)=x2q4nVn(xq&1)&xq2n(q+1) Vn(x)+Vn(qx) (V0#1).

Then

lim
s � �

P� (s)
2n \x

as+n

as+n+1+=Vn(x)

uniformly on compact subsets of C.

Proof. Putting r=2n and using Corollary 3.1, we have

P� (s)
r+1 =

s � � P� (s+1)
r \x

as+n+1

as+n+2

_
as+n+2_as+n

(as+n+1)2 +
&xqr(1+o(1)) P� (s)

r \x
as+n

as+n+1+ .

Then if

lim
s � �

P� (s)
r \x

as+n

as+n+1+=P1(x) (53)
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uniformly on compact subsets of C, P� (s)
r+1(x(as+n�as+n+1)) converges

uniformly on compact subsets of C to P2(x) such that

P2(x)=P1(xq)&xqrP1(x). (54)

Moreover in the same way, P� (s)
r+2(x(as+n+1 �as+n+2)) converges uniformly

on compact subsets of C to P3(x) such that

P3(x)=P2(x)&xqr+1P2(xq&1). (55)

Finally

P3(x)=P1(xq)&xqrP1(x)&xqr+1(P1(x)&xqr&1P1(xq&1))

=x2q2rP1(xq&1)&xqr(q+1) P1(x)+P1(qx). K

Remark 3.2. We can note that Vn+1(0)=Vn(0) for all n�0. As V0#1,
it follows that the zeros of Vn are nonzero.

Remark 3.3. Let us assume that |q|<1. Then, f is an entire function of
zero order. By using a theorem of Hurwitz (see [8], p. 119) and the fact
that lims � � P� (s)

2n (x(as+n�as+n+1))=Vn(x) uniformly on compact subsets
of C, it can be seen that the zeros of P� (s)

2n (i.e. the poles of [2n+s&1�2n])
approach � with rate as+n �as+n+1 as s � �. According to the integral
formula of the rest F(z)&[2n+s&1�2n]F (z) ([8], p. 12), it follows that
the sequence ([2n+s&1�2n]F)s�0 converges to F locally uniformly in C.
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